
2

Learning multi-party adversarial encryption and its
application to secret sharing

Ishak Meraouche Graduate School of Information Science and Electrical Engineering, Kyushu University, Japan
(e-mail: ishak.meraouche@gmail.com)

Sabyasachi Dutta Department of Computer Science, University of Calgary, Canada (e-mail:
saby.math@gmail.com)

Sraban Kumar Mohanty IIITDM Jabalpur, Jabalpur, India (e-mail: sraban@iiitdmj.ac.in) Isaac Agudo NICS Lab,
University of Malaga, Spain (e-mail: isaac@lcc.uma.es) Kouichi Sakurai Department of Information Science and

Electrical Engineering, Kyushu University, Japan (e-mail: sakurai@inf.kyushu-u.ac.jp)

Abstract—Neural networks based cryptography has seen a

significant growth since the introduction of adversarial cryp-

tography which makes use of Generative Adversarial Networks

(GANs) to build neural networks that can learn encryption. The

encryption has been proven weak at first but many follow up

works have shown that the neural networks can be made to

learn the One Time Pad (OTP) and produce perfectly secure

ciphertexts. To the best of our knowledge, existing works only

considered communications between two or three parties. In this

paper, we show how multiple neural networks in an adversarial

setup can remotely synchronize and establish a perfectly secure

communication in the presence of different attackers eavesdrop-

ping their communication. As an application, we show how to

build Secret Sharing Scheme based on this perfectly secure multi-

party communication. The results show that it takes around

45, 000 training steps for 4 neural networks to synchronize

and reach equilibria. When reaching equilibria, all the neural

networks are able to communicate between each other and the

attackers are not able to break the ciphertexts exchanged between

them.

Cryptography, Encryption, Generative Adversarial Net-
works, Neural Networks, Secret Sharing

I. INTRODUCTION

Artificial Intelligence and Cryptography have been separate
disciplines in the past due to the difficulty to build models that
can learn different cryptography primitives and techniques.
However, with the advances in deep learning especially with
the introduction of Generative Adversarial Networks (GANs)
[1], things are starting to take another turn. GANs are neu-
ral networks (usually a generator and a discriminator) that
compete against each other in order to learn a specific task
or get better at it. Abadi and Andersen [2] have shown in
2016 that GANs can be used to learn symmetric encryption.
In their model, two parties (namely Alice and Bob) compete
against a third neural network (namely Eve) in order to
protect their communication and prevent Eve from reading
the messages exchanged between them. Alice and Bob had a

Ishak Meraouche is financially supported by the Ministry of Education,
Culture, Sports, Science and Technology (MEXT) for his studies at Kyushu
University.
Sabyasachi Dutta is financially supported by Mitacs, Canada.
This research is supported by the Telecommunications Advancement Foun-
dation of Japan and also operating as a part of the India-Japan Cooperative
Science Programme (IJSCP) by DST and JSPS.

common secret key and were able to use it to encrypt and
decrypt messages. However, Zhou et al. [3] showed that the
ciphertexts generated by the neural networks in this model
are not secure as they failed multiple standard statistical tests
such as the NIST Statistical test. Multiple follow up researches
[4, 5] have shown that, with a modification to the neural
network structure and the training process, the neural networks
can learn perfectly secure encryption. More precisely, training
results of the models proposed by Li et al. [4], Coutinho et al.
[5] show that the ciphertexts are obtained as the exclusive or
(XOR) of the plaintext and secret key i.e., an encryption of a
bit of the plaintext is the result of the XOR operation with a
unique bit of the key. The results in the work given by Li et al.
[4] learns protection against more adversaries and has more
chances of learning the OTP after a training session compared
to the results of the work given by Coutinho et al. [5].

Our Contribution. In this paper, we use the model proposed by
Li et al. [4] to build a perfectly secure multi-party adversarial
encryption scheme. All the existing works except the contri-
bution by Meraouche et al. [6] studied the problem in a two
party setting. Our work is a continuation of the work given
by Meraouche et al. [6] which establishes a communication
between 3 parties and gives insights on how a multi-party
communication can be established. As the model given by
Meraouche et al. [6] has been implemented with the same
neural network structure proposed in the model Abadi and
Andersen [2], it is unable to provide strong security guarantees
as shown by Zhou et al. [3]. By using the neural network
structure and training model proposed by Li et al. [4], we can
bypass the problem and claim that neural networks learn a
secure scheme. We choose to use the model proposed by Li
et al. [4] instead of the one proposed by Coutinho et al. [5]
because the neural networks have more chances of learning
the OTP at the end of training in the model given by Li
et al. [4]. Additionally, the neural networks learn to secure the
ciphertexts against stronger attack models which are detailed
in Section III. Lastly, as an application of our new multi-
party adversarial encryption model we show how to build
an (information theoretic) implementation of secret sharing
scheme for any general access structure.

This paper is structured as follows: In section II, we define

I. Meraouche, S. Dutta, S. K. Mohanty, I. Agudo, and K. Sakurai, “Learning multi-party adversarial encryption and its application to secret sharing
”, 2022.
http://doi.org/10.1109/ACCESS.2022.3223430
NICS Lab. Publications: https://www.nics.uma.es/publications

3

the related works necessary to understand the paper. Namely:
Adversarial Encryption [2], 3-Party Adversarial Encryption
[6], Perfectly secure adversarial encryption [4, 5] and Secret
Sharing. Then, we define our multi party adversarial encryp-
tion model in Section III and our Secret Sharing model in
section IV. Lastly, we show and discuss results such as training
time and decryption accuracy in section V. We conclude the
paper in section VI.

II. BACKGROUND

In this section we describe the relevant details on the back-
ground that are required for this paper: Adversarial encryption
and key exchange. However, neural networks have also been
applied to Steganography [7, 8, 9, 10] where Alice learns
to hide a message in an image that Bob can extract and
Eve cannot differentiate an image that has a hidden message
and one that doesn’t. A key exchange scheme has also been
proposed by Kanter et al. [11], however, it has been proven
to be weak against multiple attacks by Klimov et al. [12]
and despite some improvements such as the ones given by
Salguero et al. [13], this scheme is still considered as weak
and vulnerable against many attacks.

A. Adversarial Encryption

Adversarial Encryption has been first introduced by Abadi
and Andersen [2]. The authors have shown that two neural
networks (Alice and Bob) with the same structure are able
to remotely synchronize and learn to encrypt and decrypt
messages in the presence of an eavesdropper Eve and prevent
Eve from decrypting the messages. All three neural networks
share the same neural network structure but Alice and Bob
have a common secret key that Eve does not have access
to. During training, Alice trains to generate ciphertexts that
can be easily decrypted by Bob and cannot be decrypted by
Eve without the key. Bob learns to reconstruct the plaintext
from the ciphertext using the secret key and get a decryption
accuracy as close to 100% as possible. Eve tries to decrypt
the ciphertexts transiting between Alice and Bob without the
secret key and get as close as possible to 100% accuracy.
Alice is therefore competing against Eve and trying to generate
ciphertexts that are difficult to decrypt without the secret key
and Eve is competing against Alice by trying to decrypt
these ciphertexts. If Eve is successful in its decryption, its
high accuracy will push Alice to generate ciphertexts that are
more complicated in order to prevent Eve from decrypting
the ciphertexts. This ”game” goes on until the three neural
networks have reached equilibria and either Alice and Bob or
Eve have won.

1) Neural Networks Structure used: The neural network
structure used by Alice, Bob and Eve is described in Table I
below. The neural networks need to have the same structure
in order to be able to synchronize their weights and obtain
the same weights matrix after training. If they used a different
structure, they would have a weights matrix that is different in
size and shape and therefore would not be able to synchronize.
Synchronizing neural networks with different structures is a

TABLE I
SUMMARY OF THE NEURAL NETWORK STRUCTURE PROPOSED BY ABADI

AND ANDERSEN [2] FOR ALICE, BOB AND EVE

Layer
FC
Layer
Type

Activation Filters Kernel
Size Strides Padding

1
FC
Layer
(Dense)

Relu - - - -

2 Conv1D Sigmoid 2 4 1 same

3 Conv1D Sigmoid 4 2 2

Valid for
Alice and
Bob. Same
for Eve.

4 Conv1D Sigmoid 4 1 1 same
5 Conv1D Tanh 1 1 1 same

challenging issue that will be considered in a future contribu-
tion.

We can see that the neural network starts with a relu-
activated fully connected layer to read and mix the input
(Which is the plaintext and key for Alice, ciphertext and
key for Bob and the ciphertext only for Eve). The plaintext,
ciphertext and secret key all have the same size N . Alice and
Bob receive an input of size 2N (plaintext and key) and Eve
receives an input of size N (the ciphertext). The output of
the fully connected layer is then followed by three sigmoid-
activated convolutions with different number of filters, kernel
sizes and strides. The second convolution has valid padding
for Alice and Bob in order to reduce the data size from 2N
to N . However as Eve already receives an N size input, there
is no need for halving the data and therefore same padding is
used. The last convolution is activated with the tanh function
in order to produce an output in the interval [�1, 1].

This structure is based on the mix and transform principle
as explained by [2]. The fully connected layer at the beginning
of the structure will read and mix the bits of the input together
before forwarding to the next layers. The next layers, which
are convolutions will transform their input.

The decryption accuracy of Bob and Eve is assessed through
the following loss functions which are described by the
following annotations:

• WA denotes the weights of the neural network A.
• A(WAlice, P,K) denotes Alice’s output on input P,K.
• B(WBob, C,K) denotes Bob’s output on input C,K.
• E(Weve, C) denotes Eve’s output on input C.
• d(x, y) denotes the L1 distance between x and y.
The loss function for Bob is defined below in Equation 1.

LBob(WBob, P,K) = d(P,B(WB , C,K)) (1)

Intuitively, the loss function LB determines how wrong Bob
is in his decryption.

Similarly, we define the loss function for Eve in Equation
2 below.

LEve(WEve, P) = d(P,E(WE , C)) (2)

Intuitively, LEve determines how wrong Eve is when de-
crypting the ciphertext.

4

Alice’s loss is related to Eve’s loss and Bob’s so that Alice
is penalized when Bob’s loss is too low or Eve’s accuracy is
too high. Alice’s loss function is defined in Equation 3

LAlice = LBob + (1� L2
Eve

) (3)

B. Perfectly Secure Adversarial Encryption

The model described before has been shown to produce
ciphertexts that contain information about the plaintext and/or
the secret key [3]. Therefore, Li et al. [4] modified the neural
network structure and the training process with the aim to
produce ciphertexts that are secure and do not leak information
about the plaintext and/or the key. The key modifications
shown by Li et al. [4] to improve the security are described
below.

In addition to Eve, a neural network modeling the threat
that an attacker could decrypt the ciphertexts without the
secret key, two more neural networks have been introduced.
The first one corresponds to an attacker that receives the
ciphertext and the secret key and therefore can easily decrypt
the ciphertexts generated by Alice. Alice’s neural network in
return will be forced to generate more complicated ciphertexts
that do not entirely rely on the secret key but also the neural
network structure of Alice and Bob. The authors conclude that
adding an aggressive attacker that has access to leaked secret
keys pushes Alice to learn a mapping that does not entirely
rely on the secret key but also on the parameters of their
neural networks and therefore produce stronger ciphertexts.
We could then assume that the neural network parameters
contribute to the mapping from plaintext to ciphertext and
vice versa. The other additional threats refers to an attacker
that tries to tell fake and real ciphertexts apart. This neural
network receives a plaintext, its corresponding ciphertext and a
randomly generated ciphertext and tries to tell which ciphertext
corresponds to the plaintext. This pushes Alice to generate
ciphertexts that are indistinguishable from randomly generated
ones and therefore makes sure that no information can be
extracted from these ciphertexts that are related to the plaintext
and/or the secret key.

Apart from more aggressive attackers which seem to be
pushing Alice to generate better ciphetexts as shown by Zhou
et al. [3], Li et al. [4], Li et al. [4] also modified the structure
of each neural network. The new neural network structure they
used is shown in Table II

TABLE II
NEURAL NETWORK STRUCTURE PROPOSED BY LI ET AL. [4]. THE

RESBLOCKS [14] IN THEIR MODEL CONTAIN TWO IDENTICAL
CONVOLUTIONAL LAYERS.

Layer# Layer Type Activation Filters Kernel Size Strides

1 FC Layer
(Dense) ReLU - - -

2 Resblock* Sigmoid 2 2 1
3 Conv1D Sigmoid 4 4 2
4 Resblock* Sigmoid 4 4 1
5 Conv1D Tanh 1 1 1

The ciphertexts generated by the neural networks are in-
formation theoretic secure as they are shown by Li et al. [4]

to be the result of the XOR operation between the plaintext
and the secret key. Equation 4 taken from [4] shows a sample
XOR operation between the plaintext P and the secret key K
performed by the neural network (NN). Both the plaintext
and ciphertext have a size of 42 bits. In their example, we can
see that the first bit p1 from the plaintext has been XOR-ed
with the second bit of the secret key k2, the second bit of the
plaintext with the seventh bit of the key, etc.

NN
�
P,K

�
=

2

666666666666664

p1 � k2
p2 � k7
p3 � k9
p4 � k14
p5 � k25
p6 � k21
p7 � k19

· · ·
p41 � k39
p42 � k11

3

777777777777775

(4)

Coutinho et al. [5] took a different approach by removing all
the attackers and keeping only one Attacker that receives two
plaintexts and one ciphertexts in order to differentiate between
the two plaintexts and tell which one has been encrypted to
the given ciphertexts. While their method has been shown to
be effective at learning the OTP, the results of the model given
by Li et al. [4] are better and therefore we will use this model
to implement the multi-party adversarial encryption model in
Section III.

C. 3-Party Adversarial Encryption

In the 3-party adversarial encryption scheme given by
Meraouche et al. [6], a setup similar to the one given by
Abadi and Andersen [2] is used in order to build a 3-party
encrypted communication with neural networks. The model
setup is organized as follows: in addition to Alice and Bob,
a third neural network wants to join their communication and
discuss with them. Naturally, Charlie needs to have access to
the secret key and also have the same neural network structure
as Alice and Bob.

There are different communication scenarios, as shown in
Figure 1, depending on the role of the third party, Charlie.
In the first scenario, Charlie joins the existing communication
channel and there is no secrecy between the 3 parties: any
party can communicate with another party or intercept and
read the messages sent to any another party. In the second
scenario, Charlie joins the communication by creating a new
channel with Alice, that way communication between Alice
and Bob remain privy to Charlie but Charlie and Bob cannot
communicate directly and need to use Alice as a bridge if they
need to communicate. In the third scenario, Charlie creates a
channel with Bob, and alice will have to use Charlie as a
bridge to communicate with Bob. The parameters are unique
per link and cannot be shared with other parties.

Assuming the second scenario, the training setup and proce-
dure is the same as the one by Abadi and Andersen [2] with the
difference that Alice now also needs to take into consideration
Charlie’s output when generating ciphertexts. This has been

5

Alice

Charlie

BobAlice

Charlie

BobAlice

Charlie

Bob

a) b) c)

Fig. 1. Different communication scenarios

done by adding Charlie’s loss to Alice’s loss function so that
it becomes as defined in Equation 5.

LAlice = LBob + LCharlie + (1� L2
Eve

) (5)

Charlie’s Loss is the same as Bob’s loss and is defined in
Equation 6.

LCharlie(WCharlie, P,K) =

d(P,Charlie(WCharlie, C,K)) (6)

Charlie(WCharlie, C,K) is Charlie’s output on the cipher-
text C and the secret key K and WCharlie are Charlie’s neural
network parameters.

The reason Meraouche et al. [6] considered experimenting
on training with more than two parties was that because the
2-party designs [2] did not allow more than two parties to
communicate. Abadi and Andersen [2] did not define any
explicit way how more than two parties can synchronize
and communicate together. Meraouche et al. [6] took initial
steps in that direction by showing how more than two parties
can train together and learn the same encryption/decryption
pattern. In this paper, we follow these steps by showing how a
communication can be established with any number of parties,
not limited to 2 parties as shown by Abadi and Andersen [2]
or 3 parties as shown by Meraouche et al. [6].

D. Secret Sharing

In a secret sharing system, a secret is distributed among a
user set U such that authorized subsets of users can reconstruct
the secret, and unauthorized set will not learn anything. Let �
be a subset of the power set, 2U , that specifies the subsets of
users that form an authorized set; i.e., the set of their shares
can recover the secret. A subset F ⇢ U which is not in �,
i.e. F /2 �, is called an unauthorized set and the set of shares
(Su)u2F will be independent of secret S. The collection of
unauthorized sets is denoted by F . Note that, in our model
� \ F = ; and � [F = 2U . A formal definition of secret
sharing [15] is as follows.

Definition 1 (Secret Sharing Scheme). Let U be a set of n
users labeled by [n] = {1, 2, . . . , n}. Let (�,F) denote an
access structure on these n users with F = 2U\�. A secret
sharing scheme ⇧ for an access structure (�,F) consists of
a pair of algorithms (Share,Rec). Share is a randomized
algorithm that gets as input a secret S (from a domain of
secrets S with at least two elements), � and the number of

parties n, and generates n shares (S1, . . . , Sn) � Share(S).
Rec is a deterministic algorithm that gets as input the shares
of a subset B of parties and outputs a string. The requirements
for defining a secret sharing scheme are as follows:

• Correctness: If {Su}u Share(S) for some se-
cret S 2 S , then for any B 2 �, we always have
Pr[Rec({Su}u2B) = S] = 1.

• Secrecy: Let {Su}u = Share(S). For F 2 F , let
SF = {Su}u2F . Then, for any s0, s1 2 S and for any
distinguisher D with output in {0, 1}, it must hold that

|Pr[D(Share(s0)F) = 1]� Pr[D(Share(s1)F) =
1]| ✏.

First information theoretic secret sharing for threshold ac-
cess structures was proposed by Shamir [16] and Blakley
[17]. Later, threshold secret sharing was extended to the case
of general access structure by Ito et al. [18] and also to
different types of important access structures like hierarchical
[19, 20, 21], compartmented [19] etc.. It is well known that for
information theoretic secret sharing the share size is at least
the secret size. Krawczyk [22] proposed a computationally
secure secret sharing to reduce the share size. Secret sharing
for image data was introduced by Naor and Shamir [23].

Zheng et al. [24] modeled the secret sharing problem as
a classification problem and built GANs based secret sharing
scheme. Their model contains a Generator and a Discriminator
that compete against each other. The Generator takes as input a
secret S and outputs m shares. The discriminator is fed m real
shares and m fake random shares and has to tell which ones are
real and which ones are not. The training continues until the
generator is producing shares that are indistinguishable from
random ones and the discriminator is not able to differentiate
between them.

A very recent work by Wang et al. [25] addresses the
construction of progressive secret sharing. Their technique
assigns multiple weights to model parameters for progressive
recovery. Actually, they encode their model parameters using
polynomial based threshold secret sharing such that a hierar-
chy is achieved among the set of shareholders. The sum of the
weights needs to be higher than a threshold value to recover
the secret.

It is worth pointing out that our secret sharing does not
require anything else than training of NNs. In other words,
our construction is not hybrid - it is purely dependent on
synchronization of neural networks and does not use any
external primitive(s) like Shamir secret sharing to achieve the
goal.

The focus of this paper is on secret sharing. Based on
the perfectly secure adversarial encryption model proposed by
Li et al. [4], we extend the 3-party adversarial cryptography
model [6] to an information theoretic secure multi-party en-
cryption model and use it to obtain a secret sharing scheme.

III. MULTI-PARTY PERFECTLY SECURE ADVERSARIAL
ENCRYPTION MODEL

With the outstanding progress that neural networks based
encryption has seen especially with the possibility of learning
the one time pad as shown by Li et al. [4], Coutinho et al. [5],

6

a concrete definition of how to communicate and train among
multiple parties is deemed necessary.

In a multi-party communication secured through GANs and
adversarial training scenarios [2, 4, 5, 6], we have multiple
neural networks all aiming to communicate together in a
secure way that prevents attackers from decrypting the cipher-
texts exchanged between them.

In the first scenario of the 3-party adversarial encryption
model [6], Alice wants to communicate securely with Bob
but also Charlie. As Alice, Bob and Charlie all share the
same neural network structure, they were trained all together
in the presence of Eve just like the model shown by Abadi
and Andersen [2]. However, this training method with only
one attacker has proven to be insecure [3] and training against
more aggressive attackers has been shown by multiple authors
[4, 5] to push Alice to generate ciphertexts that are perfectly
secure and do not contain any information about the plaintext
or the key.

Therefore, in our multi-party communication, we do not
use the model and training process proposed by Abadi and
Andersen [2] but the one proposed by Li et al. [4] as it
provides neural networks that are able to generate perfectly
secure ciphertexts.

Therefore, Alice trains with a total of N neural networks
(or parties) that have the same structure as Alice. Each neural
network’s loss function LNN is defined in Equation 7.

LNN (WNN , P,K) = d(P,NN(WNN , C,K)) (7)

Where P is the plaintext, K is the secret key, C is the
ciphertext, WNN are the neural network parameters of the neu-
ral network NN, d is the L1 distance and NN(WNN , C,K)
is the neural network’s output on input C and K using the
parameters WNN .

Alice has to take into consideration every neural network
in the setup and therefore Alice’s loss function is going to be
the sum of the losses of all the neural networks in the setup.
Alice’s loss function is shown in Equation 8.

LAlice =
NX

i=1

LNNi (8)

Equation 8 contains the sum of the losses of every neural
network in the setup and allows Alice to generate ciphertexts
that can be decrypted by them at the end of training. How-
ever, without any attacker to compete against, the plaintext-
ciphertext mapping is going to be weak as shown by Coutinho
et al. [5] despite the communication being successfully estab-
lished.

Adding only one attacker (Eve) has also been shown to
produce ciphertexts that are weak against many attacks as
shown by Zhou et al. [3]. For instance, Zhou et al. [3] show
that the ciphertexts produced when using only one Attacker
(Eve) did not pass many statistical tests such as the X2 test
and the NIST statistical test.

Therefore, we take the same approach done by Li et al.
[4], Coutinho et al. [5] and add more attackers in the setup.
These attackers are going to push Alice to generate perfectly
secure ciphertexts.

Alice now has to train against a total of four attackers
inspired from the models given by Li et al. [4] and Coutinho
et al. [5] to learn protection against different types of attacks.
The four attackers and the types of attacks that they are going
to do are described as follows:

• Attacker 1: Has access to the ciphertext only and tries
to decrypt without the key as proposed by Abadi and
Andersen [2]. This is the most basic attacker which
pushes Alice to generate ciphertexts that rely on the
secret key and prevent Alice from learning a plaintext-
to-ciphertext mapping that is too simple.

• Attacker 2: Has access to the ciphertext and the secret key
and learns to decrypt with the key. This attacker pushes
Alice to generate ciphertexts that rely not only the secret
key but also the neural network parameters as shown by
Li et al. [4].

• Attacker 3: Receives a plaintext P , its corresponding
ciphertext C and a random ciphertext C 0 and has to deter-
mine which ciphertext belongs to P . This attacker outputs
two probabilities: ⇡1, the probability that C is a ciphertext
for P and ⇡2 the probability that C 0 is a ciphertext for P .
This attacker pushes Alice to generate ciphertexts that are
indistinguishable from randomly generated ones as shown
by Li et al. [4].

• Attacker 4: This attacker receives two plaintexts P1, P2

and a ciphertext C and has to tell which plaintext has
been encrypted to C as proposed by Coutinho et al. [5].
This attacker outputs two probabilities: ⇡1, the probability
that P1 is the plaintext that corresponds to C and ⇡2,
the probability that P2 corresponds to C. This Attacker
pushes Alice to generate ciphertexts that are secure
against chosen plaintext attacks as shown by Coutinho
et al. [5].

As these attackers are neural networks, they are trained to
perform different attacks. So even if one Attacker might look
stronger than another one, it can only perform the attack it
has been trained for. As a result, we use different attackers so
that Alice can learn to produce ciphertexts that are resistant
to multiple Attacks.

Figure 2 below shows the overall multi party model includ-
ing the four attackers.

Alice

…

P+K

CK

Attacker 2 Attacker 3 Attacker 4Attacker 1

Fig. 2. Overall architecture of the multi-party adversarial encryption model.

We can see in Figure 2 that Alice receives as input a
plaintext P and the secret key K and outputs C, the ciphertext.

7

TABLE III
NEURAL NETWORK STRUCTURE USED FOR Attacker3 AND Attacker4 IN

ORDER TO PRODUCE PROBABILITIES.

Layer# Layer Type Activation Filters Kernel Size Strides

1 FC Layer
(Dense) ReLU - - -

2 Resblock Sigmoid 2 2 1
3 Conv1D Sigmoid 4 4 2
4 Resblock Sigmoid 4 4 1
5 Conv1D ReLU 1 1 1

6 FC Layer
(Dense) Softmax - - -

All the neural networks that are communicating with Alice
(NN1 · · ·NNN) receive as input the ciphertext C and the
key K and produce their decrypted text PNN1 · · ·PNNN .
Attacker 1 receives the ciphertext and tries to decrypt it and
output PA1. Attacker 2 receives C,K and tries to decrypt
with the key outputting PA2. Attacker 3 receives a plaintext
P , its corresponding ciphertext C and a random ciphertext
C 0 and output two probabilities: ⇡1 the probability that C
is a ciphertext for P and ⇡2 the probability that C 0 is a
ciphertext for P . Lastly, Attacker 4 receives a ciphertext C
its corresponding plaintext P1 and a random plaintext P2 and
outputs two probabilities: ⇡1 the probability that P1 is the
plaintext that was encrypted to C and ⇡2 the probability that
P2 is the plaintext that was encrypted to C.
Attacker1’s loss function is defined in Equation 9 and

similarly to the other neural networks, it is the L1 distance
between the plaintext and Attacker1’s output.

LA1(WA1, P) = d(P,A1(WA1, C)) (9)

Attacker2’s loss function is defined in Equation 10 and
similarly to the other neural networks, it is the L1 distance
between the plaintext and Attacker2’s output. The difference
from Attacker1 is that Attacker2 has also access to the secret
key that we suppose that it was leaked to him.

LA2(WA2, P) = d(P,A2(WA2, C,K)) (10)

As for Attacker3 and Attacker4, these two neural net-
works are making classifications and therefore needs to have
some changes in their neural network structure in order to out-
put probabilities. Basically, we keep the same neural network
structure as Alice but add an additional softmax-activated fully
connected layer as a last layer in order to output probabilities
instead of a bistream. The new neural network structure for
Attacker3 and Attacker4 is shown in Table III.

We notice that the only change is an additional softmax-
activated fully connected layer at the end of the neural network
structure.

As for the loss function for Attacker3, it is the bi-
nary cross-entropy. Given N plaintexts

⇥
P(0), P(1), ...P(N�1)

⇤
,

and two sets of N ciphertexts
h
C1

(0), C
1
(1), · · ·C1

(N�1)

i
,

h
C2

(0), C
2
(1), · · ·C2

(N�1)

i
we define the loss function LA3 for

Attacker2 in Equation 11 below.

LA3 = � 1

N

N�1X

i=0

2X

j=1

yj(i) log
⇣
⇡j

(i)

⌘
(11)

Where yj(i) = 1 if P(i) is the plaintext of Cj

(i) and
0 otherwise. Intuitively, ⇡j

(i) is the probability that Cj

(i) is
the ciphertext corresponding to the plaintext P(i). Therefore,
Attacker3 learns by minimizing LA3.

The loss function of Attacker4 is similar to the one of
Attacker3 i.e. the binary cross-entropy.
Given N ciphertexts

⇥
C(0), C(1), . . . , C(N�1)

⇤
, and two sets of

N plaintexts
h
P 1
(0), P

1
(1), · · ·P 1

(N�1)

i
,

h
P 2
(0), P

2
(1), · · ·P 2

(N�1)

i
we define the loss function LA4 for

Attacker4 in Equation 12 below.

LA4 = � 1

N

N�1X

i=0

2X

j=1

yj(i) log
⇣
⇡j

(i)

⌘
(12)

Where yj(i) = 1 if C(i) is the ciphertext of P j

(i) and 0

otherwise. Intuitively, ⇡j

(i) is the probability that P j

(i) is the
plaintext corresponding to the ciphertext C(i).

Therefore, Attacker4 learns by minimizing LA4.
Alice’s loss function defined in 8 needs to be modified in

order to take into consideration the four attackers that we
added to the setup. Alice’s new loss function is defined in
Equation 13.

LAlice =
NX

i=1

LNNi + (1� L2
A1

) + (1� L2
A2

)

�min(LA3, 0.5)�min(LA4, 0.5)

(13)

We use min(LA3, 0.5) and min(LA4, 0.5) in Alice’s loss
function in order to prevent Alice from maximising the loss
of Attacker3 and Attacker4. Ideally, we want their loss to
be equal to 0.5 which, in probabilities, corresponds to making
assumptions that are random.

The results shown in Section V show that indeed all the
neural networks are able to communicate with Alice while
preventing the attackers from reaching their goals.

A. Communication scenarios

We consider the following two scenarios for our multi-party
communication setup:

1) First Scenario: The first scenario is identical to the
first scenario that was proposed by Meraouche et al. [6]: All
the communicating parties are synchronized with Alice and
therefore encrypted messages sent to/from any party can be
decrypted and read by the others.

2) Second Scenario: In the second scenario, the encrypted
messages communicated between any subset of parties and
Alice remains hidden from the rest of the parties. In such a
case, this subset of parties needs to train again with Alice
with another set of parameters in order to be able to exchange
messages with Alice while keeping privacy of the messages
intact from the other parties in the set.

8

IV. APPLICATION: SECRET SHARING BASED ON
MULTI-PARTY ADVERSARIAL ENCRYPTION

Our proposed secret sharing scheme is based on the multi
party adversarial encryption model proposed in Section III and
uses the second scenario where it is possible to achieve secrecy
of the messages exchanged between one or more parties with
Alice.

In our secret sharing scheme, we have a Dealer D that has
a master secret MS to be divided into N shares st1, · · · , stN
and distributed among N shareholders SH1, · · · , SHN such
that all the N shareholders are required to reconstruct the
master secret MS. That is, we first propose an N -out-of-
N secret sharing scheme. Using this construction, we later
generalize to propose secret sharing schemes for any general
access structure.

The Dealer and the shareholders are all neural networks
with the same structure shown in Table I. The Dealer plays
the same role of Alice in the proposed multi-party adversarial
encryption model and synchronizes with the shareholders as
described in the second scenario (see Section III). For N
shareholders to synchronize with, the Dealer has N sets of
parameters W = {W1, . . . ,WN}. Dealer uses one unique set
of parameters Wi to synchronize with a unique shareholder
SHi. The Dealer can also be viewed as a server containing
N neural networks each synchronizing with one unique share-
holder.

Once the synchronization is complete, the Dealer generates
N secret keys K1, . . . ,KN that are going to be used to
encrypt/decrypt the data with the N shareholders. We assume
that the Dealer has a secure tunnel with every shareholder in
order to deliver the secret key to them. The overall setup has
the following variables:

• The master secret MS.
• W1, . . . ,WN denote the parameters which the Dealer

has used to synchronize with the N shareholders
SH1, . . . , SHN . Every Wi was used to synchronize with
the shareholder SHi (i 2 [1, N]).

• We denote the parameters (of the neural network) of the
ith shareholder by WSHi . WSHi are the result of the
synchronization process of the ith shareholder with the
Dealer. We note that this WSHi is equal to Wi after the
training.

• WSHi will be stored by the ith shareholder and Wi will
be stored by the dealer.

• K1 · · ·KN , the secret keys that the Dealer has distributed
to the N shareholders
SH1, . . . , SHN . Every Ki is sent to SHi with i 2 [1, N].

Additionally, we define the following functions that we use
in the process of creating the shares and the reconstruction of
the master secret:

• The function Enc(Wi,M,Ki) denotes the encryption by
the Dealer with plaintext input M , key Ki and using the
parameters Wi.

• The encryption process consists of passing the message
M , the key Ki through the Dealer’s neural network and
calculating the output of its neural network using the
parameters Wi. The output is the encrypted result.

• Dec(WSHi , C,Ki) denotes the decryption of the input
C by the ith shareholder using the key Ki and the
parameters WSHi .

• The decryption process consists of passing the encrypted
message C, the key Ki through the ith shareholder’s
neural network and calculating the output of its neural
network using the parameters WSHi . The output is the
decrypted result.

Shares Construction.

In the Setup we have a Dealer (neural network) with param-
eters W1, . . . ,WN in synchronization (as described in the sec-
ond scenario of Section III) with N parties SH1, . . . , SHN .
The Dealer with input master secret MS constructs N shares
st1, . . . , stN in the following manner.

1) The Dealer generates N random keys K1, . . . ,KN . Each
key Ki is shared with the shareholder SHi using a secure
tunnel.

2) In the first step, the Dealer encrypts MS using W1,K1

and computes S1 = Enc(W1,MS,K1). Dealer now
proceeds as follows:
Computes Si = Enc(Wi, Si�1,Ki) for all i = 2, . . . , N .

3) The dealer sends SN to SHN through a secure tunnel
and deletes all the information from its own storage.

4) The resulting shares are sti = (WSHi ,Ki) for 1  i 
N � 1 and stN = (WSHN ,KN , SN).

Master Secret reconstruction.

The reconstruction procedure is as follows. When all the N
shareholders agree to recover the master secret they take the
following steps.

The shares construction process is illustrated in Figure 3

DEALER MS

Fig. 3. The shares construction process

Recall, only the last encryption SN has been distributed to
the shareholder SHN using the secure tunnel that we assume
the Dealer has with all shareholders. The other shareholders
have only kept their corresponding neural network parameters
and secret keys. The reconstruction of the master secret is done
by decrypting SN in the reverse order:

1) SHN calculates SN�1 by decrypting SN with his
parameters WSHN and key KN i.e., SN�1 =
Dec(WSHN , SN ,KN). Then, SHN forwards SN�1 to
SHN�1.

2) The process is repeated N � 1 times where in each
step, shareholder SHi calculates Si�1 and forwards it to
SHi�1 until the first shareholder SH1 receives S1 and
decrypts it to the master secret MS.

The master secret reconstruction process is illustrated in
Figure 4

The correctness of the recovery of master secret follows
immediately from the correctness of synchronization process
(i.e., WSHi = Wi for all i) and the correctness of the
decryption algorithms Dec(WSHi , Si,Ki) for all i. The se-

curity property of the above (N,N) scheme follows from

9

MS

Fig. 4. The master secret reconstruction process

the security of the encryptions Enc(WSH1 ,MS,K1) and
Enc(WSHi , Si�1,Ki) for all i = 2, . . . , N . We emphasize
that the encryption algorithms are in fact one time pads as
described in Section III. Therefore, the N-out-of-N secret
sharing scheme we achieve is perfectly secure.

A. Secret Sharing schemes for General Access structures

We have presented a construction to realize N -out-of-N
secret sharing scheme for any value of N . Using this basic
construction, we can achieve secret sharing schemes for any
general access structure (GAS). Suppose � = {B1, . . . , Br} is
a general access structure on a set U of users. The dealer runs a
|Bi|-out-of-|Bi| secret sharing as described above for every set
Bi, 1  i  r. The master secret MS remains the same but the
parameters W ’s and the keys K’s are independently chosen for
each Bi’s. The correctness and secrecy of this construction is
evident from the respective properties of the underlying |Bi|-
out-of-|Bi| schemes.

V. RESULTS AND DISCUSSION

As a proof of concept, we implement our proposed multi-
party perfectly secure encryption model described in Section
III.

In the implementation, Alice wants to communicate with
three neural networks NN1, NN2 and NN3 in the presence
of the four attackers shown in Figure 2. We implement the
model using Tensorflow and Keras.

The following are the hyperparameters used to train our
neural network.

• Datasize: 64 bits for the plaintexts, keys and ciphertexts.
• Batch Size: 256.
• Number of epochs: Up to 200 but the training might stop

earlier if the receiver has reached 100% accuracy and
the prediction accuracy of attackers is close to random
guesses.

• Training steps per epoch: 300.
• Learning Rate: 0.0008.
• Optimizer: Adam’s optimizer.
Alice and the three neural networks NN1, NN2 and NN3

as well as Attacker1, Attacker2 have the neural network
structure shown in Table I. Attacker3 and Attacker4 have
the neural network structure shown in Table III.

We train the neural networks until NN1, NN2 and NN3

are able to decrypt the ciphertexts sent by Alice and
Attacker1, Attacker2 have a decryption accuracy of around
50% which is equivalent to a random decryption where the
attacker does not know which bit is correct and which one is
not. If we trained them to reach 100% accuracy, they would
be able to become 100% right just by flipping all their bits.

Therefore having 50% accuracy when decrypting is the worst
case scenario from the point of the of an attacker making
random guesses.

Figure 5 shows the decryption accuracy of the three neural
networks NN1, NN2 and NN3 as well as the decryption
accuracy of the two attackers Attacker1, Attacker2 after 155
epochs.

Fig. 5. Decryption accuracy of the three neural networks NN1, NN2 and
NN3 and the two attackers Attacker1, Attacker2 during training. 0% Bits
error means that the neural network produced a plaintext with 100% of the
bits correct and 1.0 Bits error means that the neural network produced a
plaintext with 0% of the bits correct.

We can see that the neural networks start with random
decryption accuracy at the beginning of training. After 50
epochs, the three neural networks communicating with Alice
start getting better at their decryption with around 20% error
in their decryption. The two other attackers have a decryption
error ranging between 40 and 60%. It is only after 140 epochs
that the neural networks finally reach a stable state where the
parties communicating with Alice have perfect accuracy while
the two attackers Attacker1, Attacker2 have approximately
50% accuracy which is the training goal for them so that their
output is close to random and they cannot tell which bit is
wrong and which one isn’t.

As for Attacker3 and Attacker4, they were not able to
produce correct probabilities from the beginning to the end
of training. Figure 6 shows the probabilities produced by
Attacker3 on real and fake ciphertexts and Figure 7 shows
the probabilities produced by Attacker4 on real and fake
plaintexts. Both of the neural networks are producing 50%
probability on real and fake inputs meaning that they are not
able to tell which one is real and which one is not.

The experimental results show that the ciphertexts generated
by Alice are secure against all these attackers as cannot be
decrypted without the key and the weights of the neural
networks that trained with Alice. Additionally, Figures 6 and
7 show that the ciphertexts cannot be differentiated from
randomly generated ones and contain no information about
the plaintexts as Attacker4 has not been able to link the real
plaintext to the given ciphertext.

Therefore, we are achieving the same results as the results
of the work proposed by Li et al. [4] while allowing more
than one party to communicate with Alice. This means that
the encryption done by Alice or the Dealer when performing

10

Fig. 6. Probabilities produced by Attacker3 on real and fake ciphertexts.
The attacker is producing probabilities that are close to 0.5 for each of the two
inputs meaning that this attacker is not able to distinguish between real and
fake ciphertexts to tell which one the original message P has been encrypted
to.

Fig. 7. Probabilities produced by Attacker4 on real and fake plaintexts. The
attacker is producing probabilities that are close to 0.5 for each of the two
inputs meaning that this attacker is not able to distinguish between real and
fake plaintexts to tell which one has been encrypted to the real ciphertext C.

secret sharing will produce outputs that are secure against the
aforementioned cryptographic attacks and attackers.

The security and limitations of the proposed encryption
method and by transition the secret sharing scheme are the
same as the limitations of the models proposed by Li et al.
[4], Coutinho et al. [5] and purely rely on the strength of the
generated encrypted results. As long as the encrypted outputs
are secure, the shares in secret sharing will also be secure.

A. Robustness of the encryption in Secret Sharing

The robustness of the encryption is the same as in the model
proposed by Li et al. [4] (OTP encryption) because we use
the same model as them. The results show that the encrypted
outputs are resistant to different cryptographic attacks such
as chosen plaintext attacks, chosen ciphertext attacks and
cannot be decrypted without the key by a neural network that
has the same neural network structure as Alice. As for the
secret sharing scheme, all shares except for one consist of
a random key and synchronized random parameters, which
convey no information about the secret. The last share is the
iterative encryption of the secret, using N � 1 random keys

and parameters, therefore the security of this construction is
equivalent to the security of the encryption itself.

B. Time Complexity

The time complexity for encryption and decryption opera-
tions depends on the data size. We used a size of 64 bits for the
plaintext, ciphertext and secret keys in our example. The Big-
O time complexity for encryption/decryption can be calculated
as follows: The neural network will receive a 128 bits input
(64 bits key and 64 bits plaintext or ciphertext depending if
it’s an encryption or decryption). Let n = 128 in our example
be the input size of the neural network.

• The first fully connected layer has an input size of n
and its operations consist of multiplying the input by the
weights matrix. Therefore it has a complexity of O(n2).

• The following resblock contains 2 convolutional layers
with 2 filters, a kernel size of 2 and a stride of 1. Having
a stride of 1, we will slide the kernel n times over the
input. Every convolution with the 2x1 kernel will result
in 2 multiplications and 1 addition operations for a total
of 3 operations. The 3 operations will repeat n times for
each convolutional layer because we have a stride of 1.
Therefore, the Resblock’s overall complexity is O(2⇤(3⇤
n)) = O(n).

• The next convolutional layer has a kernel size of 4 and
a stride of 2 which means this kernel will be slid over
the input n/2 times over the input. Every convolution
with the 4x1 kernel will result in 4 multiplications and 3
additions for a total of 7 operations which will repeat n/2
times. Therefore, This convolutional layer’s complexity is
O(7 ⇤ n/2) = O(n).

• The following Resblock has a stride of 1 and a kernel size
of 4. The kernel will be slide over the input n times. Every
convolution with the kernel of size 4x1 will result in 4
multiplications and 3 additions for a total of 7 operations
which will repeat n times. Therefore, the complexity for
this layer is O(7 ⇤ n) = O(n).

• The last layer, a convolutional layer with a kernel size of
1 and a stride of 1. The kernel of size 1x1 will be slid
over the input n times. Each time we slide the kernel
over the input, we have only 1 multiplication operation
and therefore this layer’s complexity is O(n).

• Therefore, the overall complexity for an encryption or
decryption operation is O(n2+n+n+n+n) = O(n2).

• The activation functions are composed of a single non-
iterative instruction and therefore have a complexity of
O(n). The complexity will remain O(n2) even when
taking them into consideration.

We note that this is the time complexity of the model when
using simple matrix multiplications without any acceleration
library. This only applies to simple forward pass propagation
in order to perform an encryption or decryption operation.

C. Space Complexity

As for space complexity, our model built using Keras
and Tensorlfow has a total of 16705 trainable parameters.

11

These parameters are stored as 4 bytes floating numbers.
This means that our model parameters will occupy a total of
16705 · 4 = 66820 bytes of memory. This is approximately
65.25 megabytes of memory.

VI. CONCLUSION

We proposed a multi-party adversarial encryption model
based on the works of Li et al. [4], Coutinho et al. [5]
and forwarding the work of Meraouche et al. [6] from 3-
party to multi-party. This work differs from [6] in the sense
that a new neural network structure and training model is
used to generate ciphertexts that are more secure against
different types of attacks. Also, the works proposed by Li
et al. [4], Coutinho et al. [5] were for two party communication
while ours is for multi-party communications. We obtain an
encryption technique which learns the One Time Pad among
several neural networks and against stronger adversaries than
the one Meraouche et al. [6] has considered earlier. Our
methodology can be a candidate for providing post-quantum
security when multiple servers/NNs learn to communicate
among themselves. As an application, we show how to build an
information theoretic secure secret sharing scheme for General
Access Structures. In the proposed secret sharing scheme, the
Dealer trains and synchronizes with multiple shareholders and
then splits a secret into N shares and distributes it among
them.

As future work, it would be interesting to experiment on
synchronizing neural networks that do not have the same
neural network structure.

ACKNOWLEDGMENT

Ishak Meraouche is financially supported by the Ministry of
Education, Culture, Sports, Science and Technology (MEXT)
for his studies at Kyushu University.
Sabyasachi Dutta is financially supported by MITACS Accel-
erate fellowship, Canada vide Ref. No. IT25625, FR66861.
The authors express their gratitude to Dr. Rodrigo Roman for
his comments to improve the paper.
This research is supported by the Telecommunications Ad-
vancement Foundation (TAF) of Japan and also operating as
a part of the India-Japan Cooperative Science Programme
(IJSCP) by DST and JSPS.

REFERENCES

[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio,
“Generative adversarial nets,” Advances in neural infor-

mation processing systems, vol. 27, 2014.
[2] M. Abadi and D. G. Andersen, “Learning to protect

communications with adversarial neural cryptography,”
CoRR, vol. abs/1610.06918, 2016.

[3] L. Zhou, J. Chen, Y. Zhang, C. Su, and M. A. James, “Se-
curity analysis and new models on the intelligent sym-
metric key encryption,” Computers & Security, vol. 80,
pp. 14 – 24, 2019.

[4] Z. Li, X. Yang, K. Shen, R. Zhu, and J. Jiang, “Infor-
mation encryption communication system based on the

adversarial networks foundation,” Neurocomputing, vol.
415, pp. 347–357, 2020.

[5] M. Coutinho, R. de Oliveira Albuquerque, F. Borges, L. J.
Garcı́a-Villalba, and T. Kim, “Learning perfectly secure
cryptography to protect communications with adversarial
neural cryptography,” Sensors, vol. 18, no. 5, p. 1306,
2018.

[6] I. Meraouche, S. Dutta, and K. Sakurai, “3-party adver-
sarial cryptography,” in Advances in Internet, Data and

Web Technologies, L. Barolli, Y. Okada, and F. Amato,
Eds. Cham: Springer International Publishing, 2020, pp.
247–258.

[7] J. Hayes and G. Danezis, “Generating steganographic
images via adversarial training,” Advances in Neural

Information Processing Systems, vol. 30, pp. 1954–1963,
2017.

[8] M. Yedroudj, F. Comby, and M. Chaumont, “Steganog-
raphy using a 3-player game,” Journal of Visual Commu-

nication and Image Representation, vol. 72, p. 102910,
2020.

[9] Y. Ke, M. Zhang, J. Liu, and T. Su, “Generative steganog-
raphy with kerckhoffs’ principle based on generative
adversarial networks,” CoRR, vol. abs/1711.04916, 2017.

[10] I. Meraouche, S. Dutta, and K. Sakurai, “3-party ad-
versarial steganography,” in International Conference on

Information Security Applications. Springer, 2020, pp.
89–100.

[11] I. Kanter, W. Kinzel, and E. Kanter, “Secure exchange
of information by synchronization of neural networks,”
EPL (Europhysics Letters), vol. 57, 02 2002.

[12] A. Klimov, A. Mityagin, and A. Shamir, “Analysis
of neural cryptography,” in Advances in Cryptology -

ASIACRYPT 2002, 8th International Conference on the

Theory and Application of Cryptology and Information

Security, Queenstown, New Zealand, December 1-5,

2002, Proceedings, ser. Lecture Notes in Computer
Science, Y. Zheng, Ed., vol. 2501. Springer, 2002, pp.
288–298. [Online]. Available: https://doi.org/10.1007/3-
540-36178-2 18

[13] E. Salguero, W. Fuertes, and J. Lascano, “On the devel-
opment of an optimal structure of tree parity machine for
the establishment of a cryptographic key,” Security and

Communication Networks, vol. 2019, pp. 1–10, 03 2019.
[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual

learning for image recognition,” in Proceedings of the

IEEE conference on computer vision and pattern recog-

nition, 2016, pp. 770–778.
[15] A. Beimel, “Secret-sharing schemes: A survey,” in Cod-

ing and Cryptology. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 11–46.

[16] A. Shamir, “How to share a secret,” Commun. ACM,
vol. 22, no. 11, pp. 612–613, 1979. [Online]. Available:
http://doi.acm.org/10.1145/359168.359176

[17] G. R. Blakley, “Safeguarding cryptographic keys,” in
AFIPS 1979, 1997, pp. 313–317.

[18] M. Ito, A. Saito, and T. Nishizeki, “Multiple
assignment scheme for sharing secret,” J. Cryptology,
vol. 6, no. 1, pp. 15–20, 1993. [Online]. Available:

12

https://doi.org/10.1007/BF02620229
[19] E. F. Brickell, “Some ideal secret sharing schemes,” in

Workshop on the Theory and Application of of Crypto-

graphic Techniques. Springer, 1989, pp. 468–475.
[20] M. Nojoumian and D. R. Stinson, “Sequential secret

sharing as a new hierarchical access structure,” J.

Internet Serv. Inf. Secur., vol. 5, no. 2, pp. 24–32, 2015.
[Online]. Available: http://isyou.info/jisis/vol5/no2/jisis-
2015-vol5-no2-02.pdf

[21] T. Tassa, “Hierarchical threshold secret sharing,” Journal

of cryptology, vol. 20, no. 2, pp. 237–264, 2007.
[22] H. Krawczyk, “Secret sharing made short,” in Annual

international cryptology conference. Springer, 1993, pp.
136–146.

[23] M. Naor and A. Shamir, “Visual cryptography,” in Work-

shop on the Theory and Application of of Cryptographic

Techniques. Springer, 1994, pp. 1–12.
[24] W. Zheng, K. Wang, and F.-Y. Wang, “Gan-based key

secret-sharing scheme in blockchain,” IEEE Transactions

on Cybernetics, vol. 51, no. 1, pp. 393–404, 2021.
[25] X. Wang, H. Shan, X. Yan, L. Yu, and Y. Yu, “A neu-

ral network model secret-sharing scheme with multiple
weights for progressive recovery,” Mathematics, vol. 10,
no. 13, p. 2231, 2022.

